# get rid of memory limits
options(future.globals.maxSize = 1 * 1024^4) # Allow up to 1 TB for globals
# Set directories --------------------------------------------------------------
library(here)
wd <- paste0(here::here(), "/vignettes/")
dir_out <- paste0(wd, "output/")
crs_latlon <- "+proj=longlat +datum=WGS84" # decimal degrees
# Install Libraries ------------------------------------------------------------
# Here we list all the packages we will need for this whole process
# We'll also use this in our works cited page.
PKG <- c(
"surveyresamplr",
# tidyverse
"dplyr",
"tidyr",
"viridis",
"ggplot2",
"tibble",
"janitor",
"data.table",
# parallelizing
"forcats",
"purrr",
"furrr",
"doParallel",
# sampling
"sampling",
# modeling
"arrow",
"future.apply",
"future.callr",
"sdmTMB", # install.packages("remotes"",; remotes::install_github("pbs-assess/sdmTMBextra", dependencies = TRUE",
"DTUAqua", # remotes::install_github("DTUAqua/DATRAS/DATRAS")
"surveyIndex", # remotes::install_github("casperwberg/surveyIndex/surveyIndex")
"Matrix",
"MASS",
"cluster",
"TMB",
"INLA"
)
pkg_install <- function(p) {
if (!require(p, character.only = TRUE)) {
install.packages(p)
}
require(p, character.only = TRUE)
}
base::lapply(unique(PKG), pkg_install)
### Define study species -------------------------------------------------------
spp_list <- data.frame(
srvy = "EBS",
common_name = c(
"walleye pollock", "snow crab", "Pacific cod",
"red king crab", "blue king crab",
"yellowfin sole", "Pacific halibut",
"Alaska plaice", "flathead sole", "northern rock sole", "arrowtooth flounder"
),
species_code = as.character(c(
21740, 68580, 21720,
69322, 69323,
10210, 10120,
10285, 10130, 10261, 10110
)),
filter_lat_lt = NA,
filter_lat_gt = NA,
filter_depth = NA,
model_fn = "total_catch_wt_kg ~ 0 + factor(year) + bottom_temperature_c",
model_family = "delta_gamma",
model_anisotropy = TRUE,
model_spatiotemporal = "iid, iid"
) |>
dplyr::mutate(
file_name = gsub(pattern = " ", replacement = "_", x = (tolower(common_name)))
)
### Load survey data -----------------------------------------------------------
# source(paste0(wd, "code/data_dl_ak.r"))
load(file = paste0(wd, "/data/noaa_afsc_catch.rda"))
catch <- noaa_afsc_catch |> dplyr::filter(srvy == "EBS")
### Load grid data -------------------------------------------------------------
load(paste0(wd, "grids/noaa_afsc_ebs_pred_grid_depth.rdata"), verbose = TRUE)
#### Add temperature: Coldpool temperature data
# Data that varies over space and time (bottom temperature)
# Here, bottom temperature, and thereby the cold pool extent, have been show to drive the distribution of many species. This is especially true for walleye pollock.
# For this we are going to lean on our in-house prepared validated and pre-prepared [{coldpool} R package](https://github.com/afsc-gap-products/coldpool) (S. Rohan, L. Barnett, and N. Charriere). This data interpolates over the whole area of the survey so there are no missing data.
grid_yrs <-
dplyr::bind_cols(
pred_grid_depth[, c("longitude_dd", "latitude_dd", "depth_m")],
terra::unwrap(coldpool::ebs_bottom_temperature) |>
terra::project(crs_latlon) |>
terra::extract(pred_grid_depth[, c("longitude_dd", "latitude_dd")])
)
grid_yrs <- grid_yrs |>
tidyr::pivot_longer(
names_to = "year",
values_to = "bottom_temperature_c",
cols = names(grid_yrs_temperature)[4:ncol(grid_yrs_temperature)]
)
save(grid_yrs_depth_temperature, file = paste0("grids/grid_yr_temperature/noaa_afsc_ebs_pred_grid_depth_temperature.rdata"))
# # test you extracted correctkt
# ggplot(data = grid_yrs |>
# dplyr::filter(year %in% c(2022:2024)),
# mapping = ggplot2::aes(x = longitude_dd, y = latitude_dd, color = bottom_temperature_c)) +
# geom_point() +
# facet_wrap(facets = "year")
### Variables ------------------------------------------------------------------
srvy <- "EBS"
seq_from <- 0.2
seq_to <- 1.0
seq_by <- 0.2
tot_dataframes <- 13
replicate_num <- 3
### Run ------------------------------------------------------------------------
purrr::map(
1:nrow(spp_list),
~ clean_and_resample(spp_list[.x, ],
catch, seq_from, seq_to, seq_by,
tot_dataframes, replicate_num, grid_yrs, dir_out,
test = TRUE
)
)
### Plot indices ---------------------------------------------------------------
plot_results(srvy = srvy, dir_out = dir_out)